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Abstract

In this short note, we discuss the Chebyshev’s maximum principle in several variables. We
show some analogous maximum formulae for the common zeros in some special cases. It can
be regarded as the extension of the univariate case.
© 2003 Elsevier Inc. All rights reserved.
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Let o be a nonnegative weight function on (—o0,c0) for which
X'o(x)eL'(—ow, ) (n=0,1,...). We construct the sequence of orthonormal
polynomials p,(w; x) = y,(0)x" + -+ + (y,(w) >0), satisfying

/ pm(w; x)pn(a), X)CU(X) d_X = 5111n-
— o
It is well known that all zeros xx, of p,(w) are real and simple. Let us denote by
X, (w) the greatest zero of p,(w). The sequence {X,(w)} is increasing, and, by virtue
of a result of Chebyshev, (see [2-5]),

Xy (w) = max Lo X1 (X)) dx (n=1,2,...), (1)

Ty €M) 1 #0 fjcm 7T571(x)w(x) dx
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where H,I,_ , denotes the subspace of polynomials whose degree is not larger than
n — 1. It is the so-called Chebyshev’s maximum principle.

The essence of relation (1) lies in the fact that the Gauss cubature formula for one
variable always exists. But it is not always true for several variables. In the following,
we will discuss the analogous relationship as (1) in the multivariate case under some
conditions. For convenience, some basic notations and results for several variables
are presented here.

Let I1¢ be the space of all polynomials in d variables, Hg the subspace of
polynomials of total degree not larger than n in d variables. Let L be a positive
definite linear functional acting on IT¢, that is,

L(p*)>0, Vpell, p#0.

Let {P,},_, be a sequence of orthonormal polynomials with respect to
L, Ku(%,9) = 32%0 Djuek P¥(x)PX(y) the nth reproducing kernel.

Definition 1 (Dunkl and Yuan Xu [1]). A cubature formula of degree 2n — 1 with
dimTI?_| nodes is called a Gaussian cubature.

Definition 2. A positive definite linear functional L acting on I1¢ is called Gaussian,
if {P}} =, has N = dim ¢, common zeros.

Lemma 1 (Dunkl and Yuan Xu [1]). Let L be a positive definite linear functional.
Then L admits a Gaussian cubature formula of degree 2n — 1 if and only if {PZ}M

=n

has N = dim H;{_l COMMON zeros.

In what follows, we shall always assume L is Gaussian, and H, = {X]' =

(x4, ..., x")}Y are the mutually different common zeros of { P} -
Theorem 1. Let [(x1,...,x4) be an arbitrary linear function with respect to {xi}?zl.
Then

max{/(X}"), X/'eH,}= max (
{1(x7) i ¥ toen? w0 L(m_ (x))

Proof. Since L is Gaussian, we have

N
L(P() =Y piP(XT), pi>0 (i=1,...,N),
i=1
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for all P(x)ell{, ,. Therefore, for arbitrary n, e’ |,

N
LX)y (x)) = > pil(X)m (X7
pa
< max{/(X), X'e H\} L(m;,_, (%)),

that is,

L(I(x)m,_y(x))
max{/(X]"),X'eH,}> max —
VDK IZ 0 L ()

n—1
On the other hand, let

anl (X, Xllj)

L(x) = =) gy
) = R O X

which is meaningful by K,_i(x,y) being always positive.
Then, we have

deg(lk(x)) =n- 17 l/((/‘/jn) = 51£ja lék,]SN

Choosing k to be the index which satisfies /(X}!) = max{/(X}"), X]'e H,}, it is easy to
see that

X 2 X
max{/(X}'), X} e H,} = I(X}) = % 3)

Combining (2) and (3), we can obtain the result immediately. [

Remark 1. By Theorem 1, it is obvious that the sequence {max{/(X!), X/"e H,}},
is nondecreasing.

As some special cases of Theorem 1, we have the following.

Corollary 1.

L(x; 2
max{xj, X/'e H} = max ()9721,17,1(96))7 j=1,...,d.
’ TE,,,]EH‘I M1 #0 L(nnfl(x))

n—1°

Corollary 2.

- L xm? (x
max{z XZ»,X[.”eHn} = max (Z]—l J n—l( ))

= nn,leﬂﬁflﬂnqio L(nﬁil(x))
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Corollary 3.

max{|x;|, X}'e H,} = max max M,
Ty €T,y #0 L( T 1( ))
max M , j=12,...d.
Tyt €114 m, g #0 ( (X))
Corollary 4.
LYY exim?  (x
max Z x|, X'eH, p =  max max (2 2'/ 1 (1))
g=tlj=l.d | 7, el | 7, | #0 L(m,_(x))

Remark 2. It is worth noting that the Gaussian cubature formulae in several
variables rarely exist although they indeed exist in some special cases.
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